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Modeling elastic properties and volume change

in dental composites
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A modeling approach was applied to study elastic properties and volume change in dental
composites. Mechanics modeling results were compared with experimental data in model
materials of known composition where the filler content was varied. Composite behavior
was predicted based on polymer and filler properties in order to improve basic
understanding. Model predictions agree well with data. The models were used to discuss
effects of resin properties, filler volume fraction and microstructure (particle shape and
filler size distribution). © 2002 Kluwer Academic Publishers

1. Introduction

Dental composites are in principle very similar to
other composite materials such as, for instance, carbon
fiber/epoxy materials used in the aerospace industry.
Both materials are predominantly two-phase materials;
they are formed into a specific shape and then cured
so that the material solidifies. The materials are then
subjected to mechanical loading and chemical environ-
ments during their use. Despite of these similarities,
few studies of dental composites focus on fundamental
microstructural effects using a mechanics of materials
approach. Instead, many studies have a direct practical
objective comparing commercial materials or different
restoration placement techniques with respect to per-
formance under complex conditions.

Our long-term interest is instead to improve the basic
understanding of residual stresses in dental composites,
in particular the effect of microstructure and material
composition. The development of predictive models is
one of the major mechanics and physics challenges in
this context. In residual stress predictions, it is nec-
essary to have models for elastic properties (Young’s
modulus E and shear modulus G) and for the volume
change s. due to the curing reaction. The development
of such models for dental composites based on particles
is the primary objective of the present study.

The approach is micromechanical in nature. Because
of our interest in material composition effects, param-
eters such as filler volume fraction, elastic constants of
constituents etc. are of key importance. We are using
two different approaches. In the first, semi-empirical
approach, equations of simple form are investigated in
order to provide easy-to-use methods for property es-
timates. In the second, physical approach, we compare
new model composite data for E with predictions in or-
der to improve basic understanding. We then perform
a parametric study in order to estimate consequences
of matrix modulus changes. Work of such nature is an
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important tool in the tailoring of composition in order
to optimize material properties.

We have only found one previous attempt to use fun-
damental micromechanics models in order to predict
the Young’s modulus of dental composites [1]. How-
ever, the predictive capability of the models used in that
study was very limited. In two other studies [2, 3], phe-
nomenological models were used with fitting parame-
ters. In the study by Chantler et al. [3] an expression
for the fitting parameter was developed by comparison
with numerical simulation results, thus increasing the
predictive capability of this particular model.

There are several general reviews on the subject of
particulate composites [4-8]. Based on those reviews,
we have chosen to consider the applicability of the fol-
lowing models to dental composites. The Voigt and
Reuss models, the three phase model [9], the Halpin—
Tsai equation [10], the Lewis—Nielsen equation [11],
the S-combining rule [6], the extended phenomenolog-
ical model [3], the Hashin—Shtrikman bounds [12], and
the composite spheres bounds [13]. The model predic-
tions are compared with Young’s modulus data gener-
ated by the preparation of model composites of different
filler volume fractions (glass spheres). The matrix is a
conventional light-cured methacrylate system.

A modified version of the Rosen and Hashin [14]
model was used for volume change modeling.

2. Materials and methods

2.1. Composition

The resin was made of a 1:1 weight ratio mixture of
Bisphenol A glycerolate (1 glycerol/phenol) diacry-
late (Bis-GA) and Tri (ethylene glycol) dimethacrylate
(TEGDMA). These monomers proportions were cho-
sen because it gives a low viscosity mixture and because
the composition is the same as in the commercial com-
posite Z100. The photoinitiator system was based on a
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mixture of camphorquinone (CQ) with a molar ratio of
6 x 1072 and N, N-dimethyl- p-toluidine (DMPT) with
a molar ratio of 6 x 1073, All chemical products were
provided by Sigma-Aldrich Chemicals and used as re-
ceived. The filler was Spheriglass® from Potters and
Ballotini, grade 5000 (solid glass spheres, mean diam-
eter 3.5—7 microns, silanised for acrylate systems).
Since the maximum filler content is limited with
our materials and techniques, a commercial composite
7100 from 3M was used in order to have one material
with a higher filler content. This composite was chosen
since it is based on a similar resin system as ours. The
particles have an aspect ratio close to one and rounded
edges as observable in an SEM micrograph in the Tech-
nical product profile of Filtek™ 7250 from 3M [15].

2.2. Specimen preparation

The composite mixture was degassed at room temper-
ature to remove air. Then it was poured in a Teflon
mould with the following dimensions: 1 x 13 x 50 mm.
Mylar® films were placed on top and bottom of the
mould. The sample was light cured with a lamp Dulux
S/E 9 W/71.Itis not acommon dental lamp, its primary
application is for the curing of paints and adhesives. It
has the advantage of being able to cover an area of
30 x 100 mm and it has a high output spectrum in the
blue range (400-500 nm) as in dental lamps. One face
of the samples was irradiated for 7 min at a distance
of 1 cm and then the second face was irradiated under
the same conditions. The commercial composite was
just pressed in the mould and then light cured under the
same conditions as previously described. After mea-
surement of the density, using a liquid displacement
technique, a strain gauge (CEA-06-240UZ-120) from
Measurements Group was bonded to the specimen in
order to measure strain in the loading direction.

In order to determine the Poisson’s ratio of the pure
resin, the samples were made in a Teflon® mould with
the dimensions: 1 x 24 x 230 mm. They were then
cured 7 min on each side as previously. A strain gauge
(CEA-06-240UZ-120) was bonded to the specimen in
order to measure strain in the transverse direction.

2.3. Shrinkage
The volume change, s, was determined by the following
relationship:

d I _dn T
5 = cured ucueXmOO (1)

dcured

where d is the density. A positive value denotes
contraction.

The density of the uncured material was estimated
from the density of the different constituent products,
with the assumption that there is no interaction.

The density of the cured system was determined
using a water displacement technique as described
in ASTM D792 (1991). The samples were less than
one minute in the water, so water sorption could be
neglected.
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2.4. Mechanical properties

The Young’s modulus measurements were carried out
in a Polymer Laboratories miniature materials tester at
a strain rate of around 1%/min. The strain gauge is con-
nected to a quarter Wheatstone bridge of an amplifier.
The data are then converted from analog to digital and
saved in a computer with the load data.

The Poisson’s ratio measurements were carried out
in an Instron machine with a 500 N load cell. A 50 mm
extensometer was used to measure the extension in the
loading direction, a strain gauge for the transverse con-
traction. The extensions and the load data were saved
on a computer as previously.

2.5. Temperature

The increase of temperature during curing was mea-
sured by placing a 1 mm thick model composite layer
on an aluminum plate with the dimensions 20 x 70 x
1 mm. A thermocouple was fixed on the other side of
the aluminum plate. The sample was cured and the tem-
perature was recorded during curing.

3. Modeling

In the present study, we are interested in two models.
The first is a model for the elastic properties of a dental
composite based on stiff particles in a softer matrix. The
second is a model for volume change in the composite
as the matrix is shrinking or expanding.

For an isotropic material, there are three elastic con-
stants, the Young’s modulus E the shear modulus G
and the Poisson’s ratio v. Only two of the constants are
independent:

G E 2

T 2(14v) @)
We choose two approaches. The first we call a semi-
empirical approach where the intention is to have a
simple model in order to estimate elastic constants.
The second we call the physical model approach. In
this case, the models are based on elasticity theory. Be-
cause of the nature of these models, it becomes possible
to interpret reinforcement mechanisms on a physical
basis.

The second case considered is volume change in the
composite. Regardless of the reason for volume change,
in the modeling perspective, this is analogous to a ther-
mal expansion problem. This problem is easier to solve
than the elastic property problem. Hashin and Rosen
[14] reviewed the case of a statistically homogeneous
two-phase composite. The solution is based on elastic-
ity theory and a physical model.

3.1. Elastic constants

3.1.1. Semi-empirical models

These expressions are based on some physics argu-
ments although fitting parameters are included. Sev-
eral of the most widely used semi-empirical models
are based on an expression of the following form, as



discussed by McGee and McCullough [6]:

_ Pm(l + SX Vf)
¢ 1—xy Ve
X = (Pt — Pu)/(Pt + & Py) 3)

where P is the bulk modulus (K) or the shear modulus
(G), Vt is the filler volume fraction, the subscripts: c,
m, f refer to the composite, the matrix, and the filler re-
spectively. £ and i are parameters specifically defined
in each model, this is the difference between individ-
ual models. The Young’s modulus and the Poisson’s
ratio are related to the bulk and shear modulus by the
following relationships:

_ 9KG
" 3K+G

3K —2G

" T 26K +0)
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There are several specific cases of this approach which
differ only in the way & and v are determined.

3.1.1.1. Lewis and Nielsen model: Lewis and Nielsen
[11] used an analogy with the Mooney equation for
viscosity of suspensions. They proposed a modification
of the Kerner equation [16], to account for the limits
imposed by the maximum packing for uniformly sized
spherical particles. The expressions for the parameters
introduced in Equation 3 are:

_2(1—2vm)
A T
7 — 5vn
56 = § " Tou,
1 — ymax
¢:1+ (T:)z Vf (5)

where V™ is the maximum volume fraction of the

filler. The parameter £ is different for the bulk and the
shear modulus; subscripts K and G refer to the bulk
modulus and the shear modulus respectively.

3.1.1.2. S-mixing rule: Another classical approach is
the S-mixing rule [6]. In the case of rigid, uniformly
sized spheres, the parameters are:

b 2(1 = 2vy)
K= + vm
7T —5vm
56 = 3= 10v,,
1-V,
f

(6)

For both models (Equations 5 and 6), the parame-
ter V/"* needs to be determined. For uniformly sized
spheres, V" is 0.66 for random packing. Since dental

composites do not consist of uniformly sized particles,
V" can be between 0.66 and 1. In the case of a given
commercial material with non-uniform particle size, it
is not straight-forward to determine V"%,

3.1.1.3. Halpin—Tsai model: The Halpin—Tsai equa-
tion was first developed to predict the transverse
Young’s modulus of continuous fiber composites [17].
For both the case of transverse composite modulus and
the case of particulate composites, P in Equation 3 rep-
resents the Young’s modulus and v equals 1. Values for
& were then obtained by fitting the results of detailed
numerical analyses. It was found that £ =2 for partic-
ulate filled systems. In the same manner, it was found
that & = 1 for the shear modulus. The Halpin—Tsai equa-
tions have a simple form and are based on numerical
modeling of a real physical problem although effects
from matrix Poisson’s ratio are neglected in the final
expressions. In our particular case, the final Halpin—
Tsai expressions used in order to predict the elastic
properties of dental composites are:

E (142 L= Emy,
m E; +2E,

Ei—En
Ef + 2Em

Gul14 GE=Cmy,
m Gf-f—Gmf

~ Gi+ Gn

Vi

f

The Poisson’s ratio depends on G and E according to:

G

V= — —
2F

)
3.1.1.4. Chantler et al. model: Chantler et al. [3]
present a phenomenological model based on the classic

Hertzian elastic contact theory. In this case, the expres-
sion is the following:

Ec = En(Et/Ep)!~0~%’ 9)

The parameter 8 was determined by fitting Equation 9
to numerical simulation results for uniformly sized
spherical particles [18]. The resulting empirical expres-
sion is the following:

2[(1 =)/ (1 —v2)]"
Tn(Er/En) (10)

B =

where vr and vy, are the Poisson’s ratio of the filler and
matrix respectively. It is interesting to note that Bush
[17] found a significant effect from vy,.

3.1.2. Physical models

3.1.2.1. Rule of mixture: The simplest physical models
are based on assumptions of uniform stress (Reuss) or
strain (Voigt) in both constituents (matrix and filler).
These models are commonly termed rule of mixtures.
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The results are presented as upper (Voigt) and lower
(Reuss) bounds to, for instance, E as a function of V;.
As pointed out by Hill [19], none of the models based
on uniform stress or uniform strain fields can be strictly
correct: the interfacial forces are not in equilibrium for
constant strain; interfacial discontinuities must exist for
constant stress.

3.1.2.2. Hashin—Shtrikman  model: The  Hashin-
Shtrikman model [12] is based on variational analysis.
Also for this model, two different assumptions lead to
an upper and a lower bound. The bounds are obtained
without any information regarding filler shape or size.
However, in the case of a large modulus mismatch
between the resin and the filler, the bounds are far
apart from each other.

3.1.2.3. Composite spheres model: Hashin [13] devel-
oped the composite spheres (CS) model which con-
siders particulate filled systems with a specific, broad
distribution of particle size, with a size range extend-
ing down to infinitesimal particles. The model is again
based on variational analysis with rigorous assumptions
and does not contain any fitting parameters. However,
because of the assumptions involved, single sized par-
ticle composites of high filler concentrations are not
expected to be well described by this model. An exact
analytical expression is available for the bulk modulus,
this corresponds to the lower bound of the Hashin—
Shtrikman model. For the shear modulus, upper and
lower bounds are obtained. The expressions are:

Vi(Kr —

lus of the CS model corresponds to the lower bound
of the Hashin—Shtrikman model. The CS bounds are
much closer to each other than in the Hashin—Shtrikman
model. However, the model does not properly describe
the shear loading case.

3.1.2.4. Generalized self-consistent scheme: The gen-
eralized self-consistent scheme (SCS) reported by
Christensen and Lo [9] was developed in order to ob-
tain a better description of the shear loading case. In this
model an inclusion of radius a is embeded in a sphere of
matrix material with a radius b. The ratio n =a3/b> is
taken to be equal to the volume fraction of filler. How-
ever, the choice of 7 can be argued, as did Hashin [20].
The composite sphere is embedded in a medium that is
assigned the unknown effective properties of the filled
material. This model gives the same expression for the
bulk modulus as the CS model, but it gives an exact
analytical solution for the shear modulus. The solution
is between the CS model bounds but of complex form,
see McGee and McCullough [6]. From the theoretical
point of view, the SCS model contains a better descrip-
tion of the shear loading case as compared with the CS
model.

3.1.3. Volume change

The volume change problem is treated like a thermal
expansion problem. Rosen and Hashin [14] presented a
model for the coefficient of thermal expansion o which
takes residual stresses into account. For instance, if the

Km)

K.=K,+

1+ (1 - Vf)|:(Kf - Km)/<Km + gGm>i|

Vi

G_=G

1/(Gt — Gm) +6(1 — Vi)(Kin +2G 1) /5Gm(BKm + 4G )

4

m+
G+_Gm|:

with

Yy = G¢/Gn

A 2(4 — 5vy)
15(1 — vy)

B— 10(1 — vy)

21
o (7 — 10ve)(7 + S5vm) — v (7 — 10vy)(7 + Svp)
4(7 — 10ve) + y (7 + Sv¢)

=200 10u)1 = vy
Y Pm UL Y

The bounds for G are converted to bounds for E us-
ing Equation 4. The lower bound of the shear modu-
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(In

matrix expands and the filler is rigid with no expan-
sion, significant local stresses are formed in the matrix.
Their solution for thermal expansion in the case of a
macroscopically isotropic composite (like any dental
composite) is:
o = o + _(Om ) |:L - i] (12)
(1/Km —1/Kp) | K Kt
where the subscripts ¢, m, and f refer to the composite,
matrix, and inclusion respectively. K. is the composite
bulk modulus expressed in Equation 11.

In a modeling perspective, the reason for constituent
volume change is not important. Therefore, in the case
of matrix shrinkage, we can apply the same expression
as in Equation 12, assuming that o equals zero. Thus



the expression for composite shrinkage (s) is:

Sm [ 1 1 ]
e=—— | 13
(I/Km —1/Kp) [ Kc K¢

with designations as in Equation 12.

We also use predictions from a simplistic model
where the shrinkage s is assumed to depend linearly
on the matrix shrinkage according to

Se = sm(l — V) (14)

4. Results and discussion
The experimental data used in model predictions are
presented in Table 1.

We conducted experiments where the final composite
shrinkage s. of the material due to the curing reaction
was determined based on density measurements. The
volume fraction of filler was varied, whereas the light
intensity and the curing time were the same for all ma-
terials. Fig. 1 compares the experimental data for s. as
a function of V; with the theoritical model predictions.
According to the Rosen and Hashin model, s. decreases
in a non-linear way with V;. The reason is that resid-
ual stresses form in the matrix. Shrinkage of the soft
matrix is constrained by the stiff filler particles. The
model predictions show good agreement with data at
high filler content, whereas the discrepancies are larger
at low filler content.

Part of the reason for this is related to the fact that
there is an increase in temperature in the material during
curing. The maximum temperatures measured during
curing were 55, 45, 43, 40, and 38°C for 0O, 7, 16.5,
40, 55 volume % of filler content, respectively (higher
temperature for lower filler content). A consequence of

TABLE I Material dataused in the models. The number in parentheses
is the standard error

Matrix Young’s modulus, Ep, (GPa) 2.9 (£0.2)
Matrix Poisson’s ratio, vy, 0.37 (£0.02)
Matrix shrinkage, sm(%) 8.45 (£0.08)
Filler Young’s modulus, Er (GPa) 72

Filler Poisson’s ratio, v¢ 0.22
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Figure 1 Composite shrinkage s. as a function of V¢. The bars represent
the standard error and the lines are modeling predictions.
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Figure 2 Composite modulus E. as a function of V;. The bars represent
the standard error and the lines are semi-empirical modeling predictions.

these temperature differences and radiation shielding
due to particles is that the degree of cure will be lower
in composites than in the neat resin. Therefore, the resin
shrinkage is also lower in the composites. This is why
experimental data are lower than predictions at low V.
Athigher V¢, the shrinkage in the resin is still smaller as
compared with the neat resin. However, the volume of
resin in the composite is so small that the discrepancies
between data and predictions become smaller at high
Vr. Note the low shrinkage of Z100 due to its high V¢
(Ve =0.66).

For comparative purposes, the linear relationship of
Equation 14 is presented in Fig. 1. The difference as
compared with the Rosen and Hashin model is signif-
icant. Clearly, the effect of residual stresses has to be
taken into account in the prediction of s..

The next problem is finding a predictive semi-
empirical model for elastic constants of dental compos-
ites. Such a model has a simple form and can be readily
used to estimate elastic constants of dental composites
based on various matrices and fillers. In Fig. 2, exper-
imental data for Young’s modulus are presented as a
function of V4. There is a non-linear increase in E with
Vt. We may also note that E increases quite strongly
from about 11 GPato about 16 GPa as V¢ goes from 0.55
to 0.66. Among the semi-empirical models discussed
in the modeling section, only predictions from Halpin—
Tsai and the Chantler et al. model are presented. The
reason is that the Lewis—Nielsen and the S-combining
rule both require fitting parameters to be determined
from experimental data. Even with the fitting proce-
dures, those models still gave large discrepancies be-
tween predictions and data.

The Halpin—Tsai model and the Chantler ef al. model
both have fitting parameters determined from numeri-
cal analysis. No experimental calibration is needed and
their predictive capability is very good. In addition, both
models provide good agreement with the present exper-
imental data.

In the work by Bush [17], on which the Chantler
et al. model is based, predictions also overestimated
experimental data. On the other hand, McGee and
McCullough [6] stated that Halpin—Tsai predictions
tend to understimate the Young’s modulus at high V¢,
which is also the case here. Since predictions from
both models are rather close, our data are insufficient to
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Figure 3 Composite modulus E; as a function of V;, experimental data
from Willems et al. [22] for commercial dental composites. Lines rep-
resent semi-empirical modeling predictions.

decide on the best model because of the experimental
scatter. Any of the two models can be recommended.

In Fig. 3, experimental data from numerous com-
mercial dental composites are presented. Chantler et al.
model again predicts slightly higher modulus than the
Halpin—Tsai model at high V;. The large scatter in the
datais a consequence of the large variation in filler types
and shapes, matrix properties and possibly also uncer-
tainties in the measurements. This illustrates that un-
certainties regarding filler shape, matrix modulus, and
similar factors are more important than the selection of
Halpin—Tsai or Chantler et al. model.

The next problem to consider is the comparison be-
tween data and predictions using physical models. Here
the objective is to improve our understanding of the
mechanisms of reinforcement and the roles of the con-
stituents. In Fig. 4, E is again plotted as a function of V.
Predictions using Voigt, Reuss, and Hashin—Shtrikman
models are not presented. The reason is that the dis-
agreement with experimental data is substantial, as was
discussed by Katz [1].

In Fig. 4, the SCS model predictions fall between the
CS upper and lower bounds. Due to the problem with
the CS model for shear loading (see modeling section),
we focus on the SCS predictions. Agreement with ex-
perimental data is remarkably good, considering the
lack of any fitting parameter. However, at high V¢, data

18 + [——-—8CS8

16 L |——CS lower bound } 5
CS upper bound P

14+ = Experimental composite ’,

12 1 »  Z100

Composite modulus, E, (GPa)
o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Volume fraction, V;

Figure 4 Composite modulus E. as a function of V;. The bars represent

the standard error, lines represent predictions from physical models, SCS:
generalized self-consistent scheme, CS: composite spheres model.
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Figure 5 Composite modulus E. as a function of V;. Data are for non-
spherical fillers [20]. Lines represent modeling predictions as in Fig. 4.

tend to be higher than predictions. SCS models have
also previously been observed to underpredict proper-
ties at high V¢ [6, 8]. Nemat—Nasser et al. [8] found that
experimental data for shear viscosity (similar problem
as shear modulus) depended on particle size distribu-
tion at high V;. The maximum packing V; is assumed
to be close to 1 in the SCS model. It is possible that
the maximum packing V¢ is perhaps 0.7 for the particle
size distribution in our material and in Z100. For this
reason, some discrepancies between SCS predictions
and data are expected at high V.

In many commercial materials, the filler particles are
non-spherical. Braem et al. [21] provided data for such a
material where the particles were ground and therefore
not spherical. In Fig. 5, those data are compared with
predictions from the SCS and the CS upper bound mod-
els. Non-spherical particulate composites have slightly
higher E than those based on spherical particles. From
Fig. 5, we can conclude that the CS upper bound model
predictions agree well with data. In the predictions, a
Poisson’s ratio of 0.36 was used for the polymer matrix
as was assumed in Chantler et al. [3]. When we instead
used a Poisson’s ratio of 0.385, the agreement between
CS upper bound and data was even better. Predictions
are quite sensitive to matrix Poisson’s ratio and either
this property or G therefore need to be determined
experimentally.

In order to illustrate the application of predictive
models we may consider the question of matrix modu-
lus effects on composite modulus. Lowering of matrix

30 ~

25 {|———Em=4GPa ’

Composite modulus, E, (GPa)

0 0.2 0.4 0.6 0.8
Volume fraction, V;

Figure 6 Predicted composite modulus E. as a function of V; for dif-
ferent values for Ey,, matrix modulus. Predictions are based on the gen-
eralized self-consistent scheme.



modulus has been suggested to reduce residual stresses
in dental restorations (provided all other parameters are
unchanged). In Fig. 6, we present predictions for ma-
trix effects on the composite modulus, using the SCS
model. Effects are quite strong. For instance, as the ma-
trix modulus is decreased from 4 GPa to 2 GPa (a re-
alistic possibility), the composite modulus at Vy=0.6
decreases from 15.4 to 8.7 GPa. Therefore, reduced
matrix modulus is really a possible route to reduced
residual stresses in dental restorations.

5. Conclusions

Existing micromechanical models were compared with
data for dental composites of different filler volume
fraction V;. For volume change predictions, the Rosen—
Hashin model predictions agreed well with data. The
importance of filler-matrix interaction was demon-
strated since a simplistic linear model overpredicted
composite shrinkage.

The semi-empirical Halpin—Tsai and Chantler et al.
equations were suggested as a convenient tool for pre-
diction of elastic constants in dental composites (Equa-
tions 7—10). Predictions of Young’s modulus for the
composite, E., showed good agreement with data at
different V;. Modeling using the more physics based
generalized self-consistent scheme (SCS) was used to
improve understanding of microstructural effects on
E.. At high V¢, SCS modeling may underpredict ex-
perimental data. A possible cause is that, in this model,
the maximum packing V;/"** is assumed to be close to
1. Finally, as the SCS model was applied, the effect of
matrix modulus E}, on E; was found to be significant.
Provided matrix shrinkage and other aspects are not ad-
versely influenced, a matrix system with lowered E,
could therefore be a practical route to lowered residual
chemical stresses.
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